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Aspects of transport in a highly multiple-scattering environment are investigated 
by examining random walkers moving in media having anisotropic angular 
scattering cross sections (turn-angle distributions). A general expression is 
obtained for the mean square displacement ~x 2) of a random walker executing 
an n-step walk in an infinite homogeneous material, and results are used to 
predict scaling relations for the probability ,/(p) that a walker returns to the 
planar surface of a semi-infinite medium at a distance p from the point of its 
insertion. 

KEY WORDS: Anisotropic random walks; multiple scattering; scaling 
relations. 

1. I N T R O D U C T I O N  

A number  of remote sensing procedures have been developed which involve 
the multiple scattering of  an applied radiat ion field as it propagates  
through a r andomly  structured medium. Typically, the probe radiat ion is 
inserted at one locat ion on the surface of  a material and detected at a 
surface somewhat  distant from the point  of incidence. Examples are 
L I D A R  (light detection and ranging) of the a tmosphere  and oceans, ~14) 
seismographic procedures involving the p ropaga t ion  of sound waves, 's) 
pressure-transient analyses of  fluid-filled reservoirs, (6) and various optical 
methods for medical diagnosis. (7-1~ These techniques involve the migrat ion 
of localized packets of energy, which can be described by diffusion or 
r andom walk models. 
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Our own interests involve models of light propagation through 
biological tissue, m-14) We are particularly interested in quantities related 
to measurements of photon intensities and path lengths. Although the 
angular scattering cross sections of tissue are strongly peaked in the 
forward direction, isotropic diffusion models frequently can be used to 
analyze experimental observations as long as suitably modified, "transport- 
corrected" absorption and scattering coefficients are employed. In this 
paper we discuss aspects of such anisotropic scattering, one purpose being 
to derive scaling relationships for surface emission profiles and thereby 
infer how equivalent transport cross sections should be defined. We verify 
our theoretical results by comparison with the outcome of related Monte 
Carlo simulations. Because we ignore the effects of absorption, the model 
herein discussed is but an incomplete representation of the diffusion of light 
in optically turbid media. Scaling relations for photon transport, for a 
model which includes absorption, are discussed in a companion paperJ 15)- 

We specifically examine the behavior of random walkers inserted into, 
and then moving within, a semi-infinite homogeneous scattering medium 
bounded by a planar surface. We show, in this paper and ref. 15, that 
several parameters of surface-reemitted photons can be scaled by functions 
of the mean cosine of the polar scattering angle g = (cos 0). We compute 
quantities such as P(n), which is the distribution of the number of steps n 
needed to return to the surface, and 7(P), which is the probability density 
of walkers reemitted on the surface at a distance p from the point of 
insertion. Particular emphasis is given to describing short pathlength 
random walks, for which several run-length (i.e., scattering-length) 
distributions are investigated. We find that P(n) is a functional of 
n* =-h(g).n, where h(g) = (1 - g)/(1 + g) seems to be a suitable factor for 
fitting data at small and intermediate values of n*. The distribution 7(P) 
correspondingly can be written as a functional of a reduced variable as 
p*-s(g).p,  where p is the distance expressed in terms of root mean 
square run lengths. However, the function s(g) generally depends on the 
explicit form of the run-length distribution: for example, if the run length 
(distance between turns or collisions) is exponentially distributed, we find 
that the relevant functional dependence for short pathlengths is 
p*= [ ( 1 -  g)/(1 + g)l/Z]p. We show that, for any given scattering-length 
distribution, the scaling of 7(P) can be expressed in terms of a similarity 
transformation involving the mean square displacement of a random 
walker moving in an infinite medium. 

In Section 2 we first derive a general expression for the mean square 
displacement (x  2) and show how this quantity varies with the scattering- 
length distribution. We next show, in Section 3, how the similarity trans- 
formation can be used to predict the scaling of the surface intensities. 
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In Section 4 we describe the Monte Carlo simulations and present results 
which substantiate the theoretical inferences. We also explicitly demonstrate 
that scaled results for anisotropic scattering can be represented by our 
previously derived equivalent analytic theory of photon migration in 
isotropic media. (H~ A short discussion appears in Section 5, and the proof 
of some analytical results is described in the Appendix. 

2. R A N D O M  FL IGHT IN AN INF IN ITE  M E D I U M  

We here consider a random walk in a homogeneous medium, for sim- 
plicity first deriving relationships in planar geometry and then generalizing 
to three dimensions. Throughout the remainder of the paper, we use the 
terminology "walker" and "photon" interchangeably. 

Consider a track in two dimensions, characterized by length variables 
{/} and angle variables {0}. The "photon" first moves for a random 
distance ll in a direction defined by angle ~bo, at which point it is scattered 
and turned through a random angle 01. The photon then moves a distance 
12 to the next point of interaction with the scattering medium, where, after 
being scattered through an angle 02, it moves a distance I3, at which point 
it again changes direction. In this way, after n steps the x coordinate of the 
walker is given as 

x =  ~ t~cos(~o+L) (1) 
i - - 1  

where/3~ is defined as 

f l i=01+ "'" + 0,_1 (2) 

Consequently, the root mean square distance traveled in an n-step random 
walk is given as (x2)  1/2, where (x  2) can be expressed, according to 
Eq. (1), as 

i = 1  i = l  j = l  

x~ being defined as 

xi = li cos(~o + L) (4) 

Equation (3) can be rewritten as 

i - - 1  

i = 1  i = l  j = l  

(5) 
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Let Psc(l)dl represent the probability that a photon moves for a 
distance dl about l between collisions, and p(O) dO be the probability that 
it turns into an angle dO about 0. We assume that angles and step lengths 
are independent, and that the distribution of initial angles po(~bo) is given 
simply as po(~bo) = 1/(2re). Hence, the first term in Eq. (5) may be expressed 
a s  

(x/~) n(l=) 
i=1 - 2 (6) 

where ( / 2 ) = ~  t2psc(1)dl. The cross terms ( x i x j )  may be evaluated 
according to 

(x,xj) = (/~) ( t j )  (coS(Co +/L) cos(C0 +/~j)) 

= l P , ~ ( Z ) d l  . _ p ( O ~ _ , ) d O i _ x  

/ / x ... p(Oa) dO1 Po(~bo) cos(~bo + fli) cos(~bo + flj) d$o 
rr --re 

(7) 

The last integral may be written as 

I" po(Oo) cos(Oo + 9,) cos(~o +/~j) d~o 
- - T r  

1 [cos(fli-flj)+cos(2~)o+fl~+flj)] d~)o 
4TE - - ~  

and, from Eq. (2), we thus can express ( x i x j )  as 

( x i x j )  = _ p(Oi 1)d0~_1"" _ P(O~)?a[# (~ ~++~ (8) 

For the problem at hand, it is reasonable to assume that p(O) is an even 
function of 0, from which it follows that Eq. (8) may be expressed as 

(XiXj) = (l--~-)2 2 (pl) i - j  (9) 

where Pl is defined by 

f 
~ 

P l  = COS 0 p(O) dO (10) 
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The sum of the off-diagonal terms appearing in Eq. (5) thus is 

2 ~ { x ~ x j ) = { l )  2 p~ 1 - p ~  (11) 
~=l j=l  ~ n 1 P l l  

and, by adding the quantities given in Eqs. (6) and (11), we find that the 
expression given by Eq. (3) becomes 

(@ , n 
{ l )2  Pl ~ (lx>2 P,( -- Pl) (12) 

From Eq. (12) we observe that, even in the limit of large n, the mean 
square distance traveled from the origin depends on the anisotropy factor 
pl in accordance with the specific character of the scattering process. That 
is, the functional relationship between (x  2) and Pl implicitly depends on 
Psc(l). A related expression, for the special case of constant distances 
between scattering events, previously was derived by similar arguments. I16) 

An extension to three dimensions is discussed in the Appendix, where 
we show that the three-dimensional analog of Eq. (12) is 

g(1 -g=) 
(13) 

where g is defined as [cf. Eq. (10)] 

g =- cos O . p( O ) sin O dO (14) 

Here, in Eq. (14), 0 is to be interpreted as the polar angle and, in contrast 
to the two-dimensional case, p(O) is normalized such that S; p(O)sin 0 dO = 1. 
Equation (13) is the basis for subsequent analysis. First, we consider the 
scattering free path to be distributed according to an exponential probability 
density 

p=c(/)=2 i e l/;. (15) 

where 2 = X s  1 is the mean free path (X= is the scattering cross section). In 
this case (12)=222 and ( l ) = 2 ,  so one finds from Eq. (13) 

2 n22 
<x 2 ) 

3 1 - g  
(exponential distribution; 3D) (16) 

the two-dimensional analog of which was derived earlier in a different 
context, uT) For comparison, let us assume that the distances between steps 
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are fixed, so Psc(l)=6(1-2) and ( / 2 ) =  ( / )2=22"  We now find that 
Eq. (13) yields a result which, except for a constant, has been derived 
previously for models of polymer chains, (16'18) 

n22 l + g  
(x  2) (constant scattering length; 3D) (17) 

3 1 - g  

Lastly, suppose the scattering lengths are uniformly distributed over the 
range 0 to 22 [i.e., Psc(l)= (22) -1 for 0~<l~<2; P~c(l)=0, otherwise]. In 
this case (l 2) =4/322, ( l ) = 2 ,  and we find 

2n22 2 + g 
( x 2 ) (uniform distribution; 3D) ( 18 ) 

9 1 - g  

Note that Eqs. (16)-(18) become indistinguishable for strong forward 
scattering, when g ~ 1. 

3. PREDICTION OF SCALING RELATIONS FOR SURFACE 
PROFILES 

A quantity of primary interest in this study is ~(p), which is propor- 
tional to the number of walkers (or energy) returning to a surface at a 
distance p (in units of root mean square scattering length) from the point 
of insertion. A simple similarity transformation allows us to predict the g 
dependence of ~/(p) for any given scattering law Psc(l), once the pathlength 
distribution is specified or characterized. 

Let us start with the following relationship between probability 
densities: 

7(p)= ~(pln)P(n)dn (19) 

where N(pln) is the conditional probability that a photon returns to the 
surface at point p, having made n collisions during its travel, and P(n) is 
the path-length distribution for photons which return to the surface, the 
latter being evaluated without regard to the point where they are reemitted. 
We first assert that, in the quantity ~(pln) ,  the variable p only appears in 
the combination p2/[nf(g)], where f (g )  is defined such that (x  2) = nf(g) 
[cf. Eq. (13)]; this observation {i.e., ~ ( p l n ) =  N(p2/[nf(g)])} is based on 
the derivation, appearing in ref. 11 for an isotropic scattering lattice, of an 
expression for the probability that a photon be reemitted at point p at the 
nth step. The latter quantity was obtained by making the assumption that 
the distribution of photon displacements on an infinite lattice, after an 
n-step random walk, is given as 

P,(~) = (3/27~n) 3/2 exp( - 3~2/2n) 
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where ~= (x, y, z) is expressed in units of root mean square scattering 
length. This expression for Pn(7) is consistent with the notion that 
~ ( F ) Z ) i s o = n  , i.e., that all distances scale as p2/n. Following the analysis 
used in ref. 11 and using the expression given in Eq. (13), we construe that 
analogous results for anisotropic scattering can be obtained by making the 
substitution p2/n--*pz/nf(g), where the specific form o f f ( g )  depends on 
the scattering-length distribution Psc(l). In terms of the distance variables 
appearing in Eqs. (16)-(18), the {Pn) for isotropic scattering are Pn(r) 
exp[- - ( 3/4n )( r/2 ) 2 ] (exponential distribution), P,( r ) ~ exp[ - ( 3/2n )(r/;r ) 2 ] 
(constant scattering length), and Pn(r)~exp[-(9/8n)(r/;r 2] (uniform 
distribution). 

From Monte Carlo calculations which are described in the next 
section (see Fig. 2), we empirically find that the dependence of P(n) on the 
mean scattering angle can be conveniently expressed as 

1 - g  

(Equation (20) seems to hold quite well, whatever the scattering length 
distribution, when the scaled variable n X = n [ 1 - g ] / [ 1 - g ]  is small.) 
Thus, Eq. (19) can be written as 

7 (P)~  ~ ~ P(nh(g))dn (21) 

where h(g) is given as h ( g ) =  ( 1 -  g) / ( l+g) .  A simple coordinate 
transformation then yields 

fo ~ ( p )  ~ 

so 
p* 

( PZh(g)~ P(~) ds (22) 
~-f(g) J " 

we see that y(p) is a functional of the reduced variable 
= p[h(g)/ f (g)]  1/2, i.e., y(p) = I([h(g)/ f(g)]  1/2 p). In accordance with 

Eqs. (16)-(18) and Eq. (20), we thus find the following scaling dependences 
for the surface emission probabilities: 

~(p) ~ I([(1 - g)/(1 + g)1/2] p) 

(exponential distribution) (23a) 

7(P) ~-~ I([(1 - g)/(1 + g)] p) 

(constant scattering length) (23b) 

7(p) ~--~ I(x ~ [(1 - g)/(2 + g)1/2 (1 + g)1/2] p) 

(uniform distribution) (23c) 
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These predictions are in excellent agreement with results of simulations 
presented in Figs. 3 and 4, showing that the heuristic argument which leads 
to Eq. (22) indeed has merit. 

4. S I M U L A T I O N S  

Monte Carlo simulations of the scattering of photons in an infinite 
medium were carried out, for various values of anisotropy coefficient g, for 
the three scattering-length probability densities which led to Eqs. (16) (18). 
The mean scattering length was taken to be 1 for each case [2= 1 in 
Eqs. (15)-(18)]. Except for the constant-step distribution, the path length 
between collisions was determined by comparing a randomly generated 
number between 0 and 1 with the cumulative probability distribution given 
by Pcum(l)=SloPsc(x)dx. The latter was Pc,m(1)=l-exp(-l) for an 
exponentially distributed scattering process [cf. Eq. (15)] and, for the 
uniform distribution, Pcum(l)=I/2 (for 0~</~<2). The random scattering 
length was taken to be that value of l for which Pcum(l) equaled the selected 
random number. 

The azimuthal angle ~b was drawn randomly between values 0 and 2~. 
Unless otherwise indicated, the polar angle 0 was determined from the 
cumulative probability distribution of the Henyey-Greenstein phase 
function, (19) which takes the form 

l-g2[ 1 1 ] 
F(0)= ~g 1 - -g  (l+g2_2gcosO)Xn , O~O<~rc (24) 

In the case g = <cos 0> ~ 0, Eq. (24) takes the form 

1 - cos 0 
F(O)lg~o- 2 (25) 

which is the cumulative probability distribution of an isotropic diffusion 
process. The Henye~Greenstein phase function, which empirically repre- 
sents the scattering from a material which statistically scatters into a 
relatively broad range of angles including backscatter, often has been used 
in atmospheric studies as well as in investigations of biological tissue. 

In the first of our calculations, the photons were isotropically launched 
in an initially random direction at r -= {0, 0, 0} and the coordinates com- 
puted for each step of the subsequent random walk. The displacement R 
from the origin and its projection x on a given axis were stored in a matrix 
for several thousand photons. The mean square displacements <R 2> and 
<x 2> then were computed for each step n. Three sets of data were 
obtained, one for each of the distributions studied above (exponential 



Scaling Relationships for Anisotropic Random Walks 43 

distribution, constant step, and uniform distribution). Also, to observe the 
effect of the phase function on our results, several simulations were per- 
formed with a scattering angle density that is constant over a given cone 
of scattering angles. Such a distribution has no obvious physical analog, 
but it affords a good test of the universality of the theory. The cumulative 
probability distribution for a cone distribution is expressed as 

(ll-CosO)/2(1-g) if 0~< 0 ~<cos- l (2g-  1) (26) 
F*(O)= if cos l(2g-1)~<0~<1r 

In particular, when g=0 .5  the scattering is isotropic in the forward- 
directed half-plane, in which case Eq. (26) takes the form 

F,(O)={ll-COsO if if 0~<0~<rc/2rc/2~0~ (27) 

In a different group of simulations, photons were inserted perpendicularly 
to a plane, at a point p-= {x, y} = {0,0}. We wished to see how the 
presence of the plane might affect the results of counting procedures 
applied to the walks. Results were found to be in very good agreement with 
the analytical expressions given in Eqs. (16)-(18). 

An example is shown in Fig. la, where the dependence of the mean 
square projected displacement (x  2) is shown as a function of n for g =  0.5, 
for both the exponential and constant scattering-length distributions. In 
both instances, the curves associated with the Henyey-Greenstein and cone 
distributions are indistinguishable. Figure lb shows the superpositions of 
mean square surface displacements, in this case as a function of total path 
length ITo,, for an exponential scattering-length distribution for both reflec- 
ting and absorbing boundaries. Because the mean values of the scattering 
lengths have been chosen to be equal to one and the number of samples is 
large, the total path length on average equals the number of collisions. The 
slope of the curve in Fig. lb is twice that predicted by Eq. (16) because the 
displacement in a plane is twice that of a projection along a line, i.e., 
(p2)=(xZ)+(y2). For sufficiently large n, it mattered not if the 
photons entered with angles distributed uniformly over the entire half- 
spade leading away from the surface (i.e., as a Lambertian source), rather 
than being injected perpendicularly to the boundary. 

We continued to investigate the effects of a planar boundary by com- 
puting the length of the path that a photon traces before it reaches the sur- 
face after having been injected in a perpendicular direction. Representative 
results are shown in Fig. 2, where the path-length distribution P(lro,) is 
plotted as a function of/To,(1 - g)/(1 + g). Figure 2a contains curves, for 
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Fig. 1. Examples of results obtained from Monte Carlo simulations of random flight. 
(a) Mean-square displacement in an infinite medium (x  2) as a function of the number of 
steps n for differing scattering angle distributions. Results for g=0.5  of simulations with a 
Henyey-Greenstein distribution [Eq. (24)] and a uniform distribution in a cone [Eq. (27)] 
for the exponential and constant scattering-length distributions, (b) Mean-square surface 
displacement when photons exit a semi-infinite medium (p2)  as a function of appropriate 
scaled path length for various values of g ( + ,  g = 0 ;  �9 g=0.5;  A, g=0.8;  O, g=0.9)  for 
exponential scattering. Here the scaling factor is (1 - g) t, in accordance with Eq. (16). The 
line has a slope of 4/3, as expected. 



Scaling Relationships fo r  An iso t rop ic  Random Walks 45 

(a) 0.1 

~ .  0.01 

a. 

0.001 

~"  + 

-+ + 
+ 

. . ,  i r . . l  . . . I . . . I . ,  , I  
20  40  60  80  1 0 0  

Tot 

( b )  

o.1 

. ~ - o . o I  

0- 

0 .001  

0 
, , , l . . . l , . . l . , . l , , . l  

20  40  60  80  100  

l* 
Tot  

Fig. 2. Logarithm of the path-length distribution P(lrot) of photons returning to the surface 
after being inserted in a semi-infinite medium, plotted as a function of the scaled pathlength 
l*ot =/rot(1 - g)/(1 + g). (a) Distributions for exponential scattering lengths for various values 
o fg  ( + ,  g = 0 ;  �9 g=0.5;  A, g=0.8;  (2), g=0.9).  (b) Distributions for g=0 .5  for ( ~ )  the 
exponential, (O)  constant-scattering-length, and ( + )  uniform distributions. In both figures, 
the solid line is the expression P(n)= Kn-~/2(1- e-S/"), obtained by setting # = 0 in Eq. (28) 
and integrating over p. (K here is a fitted constant which depends on the bin size of the 
Monte Carlo simulation.) 
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Fig. 3. Surface emission probability 7(P) for different scattering-length distributions: (a) for 
exponentially distributed scattering, plotted as a function of the number  of scaled root mean 
square scattering lengths, p* = p ( 1 -  g)/(1 + g)l/2, for various values of g [cf. Eq. (23a)]; 
(b) for a constant scattering-length distribution, plotted as a function of p* = p(1 - g ) / ( 1  + g) 
[cf. Eq. (23b)];  (c) for the uniform scattering-length distribution, plotted as a function of 
p*=p~/2(1-g)/[(2+g)l/Z(l+g) 1/2] [cf. Eq.(23c)] .  Key: + ,  g = 0 ;  O, g=0 .5 ;  A, 
g = 0.8; O, g = 0.9. 
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Fig. 4. Surface emission probability 7(P) for g = 0 . 5 .  Each curve ( �9 exponential 
distribution; 0 ,  constant scattering-length; + ,  uniform distribution) is plotted as a 
function of p* appropriate to the particular stochastic nature of the scattering process (see 
Fig. 3). The solid line is an expression obtained from Eq. (28) by integrating over n and 
multiplying by a constant to account for the bin size of the Monte Carlo simulation, i.e., 
,/(p) ~ 2rip S~ F(p, n) dn oc [1 - p/(p2 + 4)1/2]. 
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different values of g, for the exponential scattering-length distribution. 
Figure2b shows results, for g=0.5,  for each of the scattering-length 
distributions discussed previously (exponential distribution, constant step, 
and uniform distribution). We note that the curves superimpose very well, 
indicating that the distribution of total path length can be scaled by a 
universal function of g. On average, the total path length is proportional 
to the number of collisions, i.e., Iro, ~ n ( l ) ,  so the results shown in Fig. 2 
lead us to infer the relationship expressed in Eq. (20). The solid lines are 
obtained from a previously developed theory of migration in an isotropic 
scattering medium (H) (see figure caption). 

The same simulated data were used to calculate the diffuse surface 
reflectance P(p).  Results are shown in Figs. 3 and 4. Note that the predic- 
tions of Eqs. (23) are very well substantiated, implying that the scaling 
relation given in Eq. (22) probably is generally valid. In particular, the 
patterns of backscattered intensity at small values of p* can be super- 
imposed if scaled by the factors given in Eqs. (23a) (23c). 

5. D I S C U S S I O N  

The calculations described in the foregoing sections were motivated 
by an ongoing interest in developing and refining theories of tissue 
optics. (11-~4) As already mentioned, the effects of tissue absorption have not 
been considered; however, the scaling information obtained in this work 
forms the basis of a similar analysis in which photon absorption is taken 
into account. (15) Although the studies herein described are applicable to a 
number of stochastic behaviors, they specifically lead to the following 
inferences regarding the migration of photons in a multiply scattering 
medium: (1) the signature encompassed in the pattern of diffuse surface 
reflectance (i.e., surface emission density) is degenerate, in that different 
combinations of scattering-length distributions and angular scattering cross 
section yield nearly the same surface profiles; (2) different materials, 
characterized by different scattering-length distributions, give rise to dis- 
similar scaling rules, but the variations will be unimportant if the scattering 
is strongly peaked in the forward direction [see, e.g., Eqs. (23)3; (3) if done 
properly, angularly anisotropic scattering processes can be described by an 
equivalent isotropic transport theory; (4) there exists an empirical scaling 
relation for short path lengths, associated with anisotropic scattering, 
which may be a universal function of g and the bulk scattering cross 
section Z's (Fig. 2). 

The scaling of absorption coefficients is fully discussed in the com- 
panion paper. (15) If, as indicated in the present work, in equivalent 
isotropic theories the path lengths are to be scaled by the factor 
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(1 -g ) / (1  + g), then the absorption coefficients should be multiplied by its 
inverse, (1 + g)/(1 - g). Additionally, because an exponential distribution is 
a close approximation of the probabilistic character of the photon scattering 
that takes place in random media, Eq. (23a) and Fig. 3a suggest that 
lengths should be scaled as p * =  (r /x/2)  Z's(1-  g)/(1 + g)1/2. The fact that 
such scaling relationships exist explains why analytic expressions derived 
for isotropic scattering media work so well in fitting results of photon time- 
of-flight measurements of biological tissues. (14,2~ 

These inferences can be used to extend the theories that we 
developed ~m previously to describe photon migration in turbid media. It 
had long been assumed that the earlier results could be reexpressed in 
terms of appropriate transport-corrected scattering and absorption cross 
sections, and we now have explicit expressions for those parameters. Trans- 
formation of analytical expressions is well illustrated by considering the 
joint probability F(p, n) that a photon (or random walker) returns to the 
surface of a semi-infinite medium at point p, after the nth sep. Based on our 
earlier photon migration model, which is related to a discrete step model 
of transport, this quantity is given by 

F(p, n) = - ~  (2rcn) 3/2 (1 - e  6o~/n) e-3p2/2ne ~n (28) 

where/z is the absorption per unit step and Po is the lattice point where the 
initial scattering occurs, here taken to be p0 = 1. In order to express 
Eq. (28) in terms of real variables (d, t), where d is the displacement along 
the surface, we first must make the substitutions (p, n) --* (p*, n*), where 

d 1 - g  +-g?j2z, (29) 

and 

n- -*n*=n  1 - g  (30) 
l + g  

Further, upon noting that n ( l ) = n S j l =  c rt, where c r is the speed of 
light in the medium, we write 

n* = 1-- g S s c v t  (31) 
1 + g 
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With these substitutions, Eq. (28) becomes 

F(d, t) oc t-3/2(1 - exp{  - [6(1 + g)]/[(1 - g) S~Crt]} ) 

x exp{ - [3d2(1 - g) Xs]/4cTt } exp( - S a C r t  ) (32) 

Note that the dependence of (d  2) here is in agreement with the behavior 
show in Fig. lb. 

Except at short times, this expression is identical to that obtained by 
solving the "transport-corrected" optical diffusion equation. (2~ The latter 
has the same form as the diffusion equation for isotropic angular scattering, 
except that the scattering cross section S,  is replaced by S', = ( 1 -  g)22s. 
However, such a simple fix-up of theories of isotropic scattering may not 
always be appropriate, as the simple substitution _r --. (1 - g) 22, implies a 
dependence on the scaled variable d * =  ( 1 -  g)l/2d, which would be at 
variance with the simulations shown in Fig. 3a. Moreover, integration of 
Eq. (32) over p yields 

F(t) oc t-1/2[1 - e x p ( - 6 / 2 ~ c r t ) ]  e xp ( -SaCr t  ) (33) 

where Ss = [(1 - g)/(1 + g)] 22s. Clearly, in this case it would be incorrect 
to replace the cross section by the usual "transport-corrected" quantity. 

Quasielastic light scattering experiments on multiply scattering 
media, ~21) in which the number of photon collisions with colloidal particles 
can be measured, may be used to test these scaling relations in a quan- 
titative fashion. We note, though, that at large distances or long times, 
experimental results might be indistinguishable from those which would be 
predicted by certain other sets of consistent scaling relations. In particular, 
for an exponential scattering length distribution, Eq. (22) is satisfied when 
the variables p* and n* both scale as ( l - g ) ,  i.e., {~,(p)~--,I([1-g]p); 
P(n)+--~P([1-g]n)} (cf., Eqs.(20) and (23a)). Although simulations 
indicate that when short pathlengths are considered the latter scaling does 
not provide results as satisfactory as those shown in Figs. (2) and (3a), 
excellent superpositions for longer pathlength random walks indeed are 
obtained with such ( t - g )  scaling. On the other hand, when constant 
scattering length random walks are studied, one finds that ( 1 -  g)/(1 + g) 
scaling works extremely well for both 7(p) and P(n), over the entire range 
of pathlengths (cf. Eq. (17)). 

Finally, we remark that the above theory applies to photon migration 
in turbid media when phase information can be ignored. Due to the 
coherence properties of laser light, in special circumstances enhanced back- 
scattered intensities can be discerned over a very small angle near the point 
where light is inserted into a random medium. (22'23) Such components, 
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which are not accounted for in the present theory, are ascribed to localiza- 
tion effects. However, they constitute a vanishingly small portion of the 
total diffuse reflected intensity and therefore are of little importance when 
light is collected over a large solid angle. 

A P P E N D I X :  P R O O F  OF EQ. (13 )  

We now provide a short proof of the expression for the mean square 
distance traveled by a walker in an infinite, 3-dimensional, medium. In 
analogy with Eq. (5), we have ( x  2) = �89 where L is the sum of the 
vectors describing the individual steps of the walk, L = Z~=I Ij. Hence, 
( L  2) is given as 

i 1 
( L 2 )  = i ( / 2 )  + 2  i Y, (l~'ls) (A.1) 

i--1 i=1 j - -1  

Because the individual steps are assumed to be identically distributed, the 
first term in the equation can be written as [cf. Eq. (6)] 

( l f )=n( l  2) (A.2) 
i --I  

To compute the second term in this expansion, let us represent each 
vector step in the form lj = lj Uj, where Uj is a unit vector in the direction 
of / j ,  and let us denote the Cartesian coordinates { Uj, Vj, Wj } -= Rj to be 
the reference frame for the j th  step. (24) (Vj and Wj are mutually per- 
pendicular vectors, both perpendicular to Uj.) The vector lj+ 1 then can be 
represented in terms of the coordinates Rj as lj+l = lj+l Uj+I, where U~+1 
is expressed as the product of a 3 • 3 matrix .,17i+ 1 and a l • 3 column 
matrix d as Uj+ 1 = )Tj+ 1 "d, the latter being defined as (24':5) 

" / COS 0 j+  1 - s i n  0j+l 0 ) 

s cosOs+lcos~s+l - sin q~j+ 1 (A.3) 

\ sin 0j+l sin ~bj+l cos 0j+l sin ~b i+1 cos ~bj+l / 

and 

d =  (A.4) 

Here 0j+ 1 and ~j+l represent, respectively, the polar and azimuthal angles 
of Uj+I taken with respect to the coordinate system Rj. 

Note that the first component of lj+x in the reference frame Rj is in the 
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direction of UJ" By extension, the vector  li, for i > j, can be represented in 
111. as 

m = j + l  

the first c o m p o n e n t  of which will be in the direction of Uj. (The matr ix  
produc t  is obta ined  by first mult iplying Xj+~ by )Ts+ 2, then mult iplying by 
~ + 3 ,  etc.) Hence,  ! s- li can be obta ined  as 

lj" !~ = (Isli) x first c o m p o n e n t  of P ~ _ j - d  

and the expecta t ion ( l j .  !~) m a y  be expressed as 

( l j . l i )  = ( l j ) ( l i )  X ({f i rs t  componen t  of fe ~ . d } )  

Recognizing that  the componen t s  of the matr ices {'~m } are independent ,  
we immedia te ly  find, because ( cos  ~b ) = ( s in  ~b ) = 0 (uniform distribution),  
that  ( r e  j )  can be expressed as ( f i _ s ) =  (J?)~ J, where ( J ? )  is given 
a s  (24) 

 sin0  i) 
0~  A6, 

Consequent ly ,  one finds (24) 

( / j ' l i )  = ( l j ) ( l ~ ) ( c o s  0 )  ~-j  (1.7)  

and Eq. (13) follows after not ing that  the double  sum in Eq. (A.1) can be 
evaluated according to a s u m m a t i o n  similar to that  given in Eq. (11 ). 
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